A RecG-independent nonconservative branch migration mechanism in Escherichia coli recombination.

نویسندگان

  • R Friedman-Ohana
  • I Karunker
  • A Cohen
چکیده

To gain insight regarding the mechanisms that extend heteroduplex joints in Escherichia coli recombination, we investigated the effect of recG and ruv genotypes on heteroduplex strand polarity in intramolecular recombination products. We also examined the cumulative effect of mutational inactivation of RecG and single-strand-specific exonucleases on recombination proficiency and the role of Chi sites in RecG-independent recombination. All four strands of the two homologs were incorporated into heteroduplex structures in wild-type cells and in ruv mutants. However, in recG mutants heteroduplexes were generated almost exclusively by pairing the invasive 3'-ending strand with its complementary strand. To explain the dependence of strand exchange reciprocity on RecG activity, we propose that alternative mechanisms may extend the heteroduplex joints after homologous pairing: a reciprocal RecG-mediated mechanism and a nonreciprocal mechanism, mediated by RecA and single-strand-specific exonucleases. The cumulative effect of recG and recJ or xonA mutations on recombination proficiency and the inhibitory effect of recJ and xonA activities on heteroduplex formation by the 5'-ending strands are consistent with this proposal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli.

The RuvAB, RuvC and RecG proteins of Escherichia coli process intermediates in recombination and DNA repair into mature products. RuvAB and RecG catalyse branch migration of Holliday junctions, while RuvC resolves these structures by nuclease cleavage around the point of strand exchange. The overlap between RuvAB and RecG was investigated using synthetic X- and Y-junctions. RuvAB is a complex o...

متن کامل

Repair and antirepair DNA helicases in Helicobacter pylori.

Orthologs of RecG and RuvABC are highly conserved among prokaryotes; in Escherichia coli, they participate in independent pathways that branch migrate Holliday junctions during recombinational DNA repair. RecG also has been shown to directly convert stalled replication forks into Holliday junctions. The bacterium Helicobacter pylori, with remarkably high levels of recombination, possesses RecG ...

متن کامل

Resolution of Joint Molecules by RuvABC and RecG Following Cleavage of the Escherichia coli Chromosome by EcoKI

DNA double-strand breaks can be repaired by homologous recombination involving the formation and resolution of Holliday junctions. In Escherichia coli, the RuvABC resolvasome and the RecG branch-migration enzyme have been proposed to act in alternative pathways for the resolution of Holliday junctions. Here, we have studied the requirements for RuvABC and RecG in DNA double-strand break repair ...

متن کامل

Promoting and avoiding recombination: contrasting activities of the Escherichia coli RuvABC Holliday junction resolvase and RecG DNA translocase.

RuvABC and RecG are thought to provide alternative pathways for the late stages of recombination in Escherichia coli. Inactivation of both blocks the recovery of recombinants in genetic crosses. RuvABC resolves Holliday junctions, with RuvAB driving branch migration and RuvC catalyzing junction cleavage. RecG also drives branch migration, but no nuclease has been identified that might act with ...

متن کامل

Effect of host species on recG phenotypes in Helicobacter pylori and Escherichia coli.

Recombination is a fundamental mechanism for the generation of genetic variation. Helicobacter pylori strains have different frequencies of intragenomic recombination, arising from deletions and duplications between DNA repeat sequences, as well as intergenomic recombination, facilitated by their natural competence. We identified a gene, hp1523, that influences recombination frequencies in this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 23  شماره 

صفحات  -

تاریخ انتشار 1999